Guardian Safety Chucks

2018 Catalog
The Montalvo Guardian Safety Chuck

Emphasis on design, flexibility, technology and quality.

- The journal inserts are the only wear parts and are quickly and easily removed using only two wrenches!
- The standard chuck journal seat is hardened to Rc = HRC 48-50.
- The steel handwheel has a black oxide finish.
- Within maximum and minimum limits the shaft end may be customized.
- All shaft ends are drilled, tapped and machined with keyway.
- All housings are pre-drilled and tapped to accept a Montalvo brake.
- Mounting holes on flange mount chucks are counter bored.
- DXF files and 3D models are available for all sizes.

Guardian safety chucks are designed with flexibility in mind to meet specific customer needs. Montalvo engineers can assist you with the proper technical solution for your web winding application.
Standards

The Montalvo Corporation, world renowned supplier of quality web control products and services, offers a full line of safety chucks as part of an ongoing effort to supply customers with a total web control package.

The Guardian includes a series of three different normal chuck sizes and one sliding chuck size. The sliding chuck is available with either a moving head or a moving head and shaft. Both allow customers to axially align a shafted roll to a web guide or a trimmer on either unwind or rewind operations. The journal seat/handwheel assembly bolts to the shaft with four bolts and is easily serviced.

Guardian chucks provide a safe and effective way of coupling torque devices to shafted unwinds or rewinds. Heavy duty bearing design ensures maximum load and speed capacities for most converting applications. The easily replaceable journal seat / handwheel assembly supports a variety of shaft journal configurations without modification. Tightly held journal seat tolerances also provide superior roll winding / unwinding concentricity.

Shaft lengths are available to correspond to all Montalvo brakes and a wide variety of applications. Montalvo application engineers are available to assist customers with new installations or retrofit applications.

Check out Montalvo’s wide range of web control products for the converting, paper, composites, nonwovens and plastic film industries. These include brakes, clutches, electronic tension controls and indicators, load cells, and safety chucks.
The Difference

Handwheels and journal seats are critical parts of a safety chuck and subject to wear. That is why all Guardian chucks are equipped with an easily replaceable journal seat/handwheel assembly. This component is designed to be quickly installed or removed using only one wrench!

- The tilting handwheel/chuck journal seat assembly, is interchangeable as a unit.
- Handwheels are available with two different types of journal seats. They can be mounted to the same type of chuck without replacing the shaft.
- The replacement handwheel/chuck journal seat assembly is mounted concentrically to the shaft and is attached using high tensile strength bolts.
- The finger guard covers the gap between handwheel and housing.
- Our modular design is not only maintenance friendly but also minimizes inventory of spare parts.
Product Overview

“Normal” safety chucks

- Pedestal and flange chucks
- With and without shaft end
- Square dimensions 20 - 50 mm
- Roll weights to 30,000N*

“Sliding” safety chucks

- Pedestal and flange chucks
- With and without shaft end
- With “stationary” or with “sliding” shaft end
- 50 or 100 mm axial adjustment
- Square dimensions 20 - 50 mm
- Roll weights to 30,000N*

Consider using Montalvo Tension Control Brakes and Clutches

- High Thermal Capacity
- Multiple Torque Range
- Easy Maintenance

<table>
<thead>
<tr>
<th>Size</th>
<th>Max. Roll Weight* N (lb)</th>
<th>Max. Torque Nm (in-lb)</th>
<th>Max. Shaft Extension mm (in)</th>
<th>V-Type Square Journal Seat* A2 = mm (in)</th>
<th>Triangle Journal Seat A3 = mm (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1000</td>
<td>10,000 (2,248)</td>
<td>200 (1,770)</td>
<td>Ø35k6 x90 (3.54)</td>
<td>20-30 (1.000-1.25)</td>
<td>20-30 (0.787-1.181)</td>
</tr>
<tr>
<td>G1800</td>
<td>18,000 (4,047)</td>
<td>380 (3,363)</td>
<td>Ø50k6 x100 (3.94)</td>
<td>30-40 (1.25-1.50)</td>
<td>32-38 (1.260-1.496)</td>
</tr>
<tr>
<td>G3000</td>
<td>30,000 (6,744)</td>
<td>1,200 (10,621)</td>
<td>Ø65k6 x140 (5.51)</td>
<td>40-50 (1.50-2.00)</td>
<td>40-47 (1.575-1.850)</td>
</tr>
</tbody>
</table>

*Chucks with A2 journal seats are required to have safety locks if roll weights exceed 70% of maximum roll weight.
Deflection, Torque and Winding Speed

Deflection

Roll weight is the first consideration in the selection of a chuck.

The maximum permissible roll weight given in the data sheets refers to shaft journal design A3.

Chucks with A2 journal seats are required to have safety locks if roll weights exceed 70% of maximum roll weight.

The information given in this catalog refers to the load capacity of our chucks. You must consider the design, size, stability and hardness of the shaft journal as well (see below).

Torque

The maximum permissible roll weight given in the data sheets refers to shaft journal design A3.

Winding Speed

“Standard” chucks may be used up to 300 m/min (980 ft/min) winding speed.

For winding speeds over 300 m/min., “high speed, dynamically balanced” chucks should be used (see “Options”).

If your application requires combining maximum rated roll weight, torque and winding speed, please contact Montalvo for technical support.
Shaft Journal Designs

V-Type Square (A2)
- Easy loading of the winding shaft
- Common to most air shaft journals
- Special attention to alignment and shaft deflection is required
- Reduced play between chuck seat and journal
- Tolerance 0 / +0.1 mm (0.004 in)

⚠ Safety lock required when loads exceed 70% max. load rating.

Triangle (A3)
- Recommended for high rpm applications
- Easy loading of the winding shaft
- Max. capacity for roll weight & torque
- Reduced play between chuck seat and journal
- Tolerance H7
Shaft End

Shaft end dimension may be specified by the customer.

If the dimensions of the shaft end are within the min./max. limits given in the data sheets and can be produced on a CNC-lathe, there is no additional charge.

- The max. shaft diameter cannot be exceeded.
- Shaft ends, shown in the part designation by the suffix -MW-(D)x(L) are machined with a parallel key to DIN 6885, part 1, and with end threaded to DIN 332, form D. Shafts may be specified to inch tolerances as well.

<table>
<thead>
<tr>
<th>Ø SHAFT mm</th>
<th>THREAD</th>
<th>DEPTH mm (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>over 16 to 21</td>
<td>M6</td>
<td>16 (5/8)</td>
</tr>
<tr>
<td>over 21 to 24</td>
<td>M8</td>
<td>19 (3/4)</td>
</tr>
<tr>
<td>over 24 to 30</td>
<td>M10</td>
<td>22 (7/8)</td>
</tr>
<tr>
<td>over 30 to 38</td>
<td>M12</td>
<td>28 (1-1/8)</td>
</tr>
<tr>
<td>over 38 to 50</td>
<td>M16</td>
<td>36 (1-7/16)</td>
</tr>
<tr>
<td>over 50 to 85</td>
<td>M20</td>
<td>42 (1-5/8)</td>
</tr>
</tbody>
</table>
Winding Shaft Journal

There are min./max. limits for journal seat geometry as shown on data sheets:

- Within these limits any diameter and length may be specified.

- The published values for roll weight and torque always refer to the maximum value of the journal seat geometry A3.

- To minimize wear, maximum journal size should be chosen.

In addition to total load and winding speed, deflection of the winding shaft plays an important role in the life expectancy of the journal seat and shaft journal. Therefore, please note the following:

- Carefully chamfered edges provide for safe closing function.

- Conical or tapered winding shaft journals offer improved performance and should be used whenever possible.

- Winding shafts designed for minimal deflection should be used.

- The hardness of the shaft journals and the chuck journal seat should be made to suit each other. This means that the part which is least expensive and easiest to replace can be designed as the wear part. Expensive winding shafts should always be matched with chucks having journal seats of lower hardness.

With the exception of light applications, low winding speeds, short winding shafts or low bearing loads, winding shaft journals should conform to the specifications given in the chapters “Normal-Chucks” and “Sliding-Chucks”!
Installation

Note the following when installing chucks:

- Excessive deflection of the winding shaft causes an upward force on the handwheel with each revolution when it is in the 12 o’clock or loading position.

- Continuous abuse of this type leads to wear on the chuck housing.

- In cases of advanced wear to the chuck housing, the handwheel could be forced open in the downward position. This presents the risk that the winding shaft could fall out during operation.

- Wear to the chuck housing presents extreme risk of accident! (See “Maintenance” section covering possible defects and their causes!)

During installation, or before start-up, please check the following:

- Does the winding shaft load easily?

- Does the winding shaft have axial play of 0.5 mm (0.020 in)?

- Check for proper closing function of the handwheel (it should be possible to open and close the handwheel by hand without using excessive force and without the use of tools).

- Check that the chucks are precisely aligned. Ensure that, with the handwheels closed, the winding shaft can be moved easily in an axial direction when the chuck is in loading position as well as at various rotating positions.

Please contact Montalvo in case of special situations.
Options:
RS designates **Right** side lock (shown below)
LS designates **Left** side lock

Safety locks prevent the unintentional opening of the handwheel during operation. It is imperative with high-speed chucks.

The safety lock system:

- A spring loaded, hardened pin indexes into a bore opposite the ball catch.
- In order to unlock the handwheel this pin must be pushed away from the center of the hand wheel (see below).
- When closing the hand wheel the pin clicks into place automatically.

A handwheel safety lock is shown below.

- Lock installed on **RIGHT** side shown.
- Can be ordered with **RIGHT** lock or **LEFT** lock.
- Can be easily swapped from side to side or repaired by customer.

⚠️ Chucks with A2 journal seats are required to have safety locks if roll weights exceed 70% of maximum roll weight.
Axial Carrier

The axial carrier is standard with sliding safety chucks. It can also be mounted on normal chucks.

Normal chucks can be mounted on two separate sliding bases and the axial connection of the chucks can be transmitted by the winding shaft.

The use of axial carriers can also be useful, if the chucks are installed rigidly and a precise positioning of the winding shaft is required. In this event the winding shaft journals must be designed to match sliding safety chucks.

Conical Chuck Journal Seat

A cost effective alternative to conical shaft journals.

A cost effective alternative to machining journals with difficult and expensive undercuts is the conical journal seat, which allows the use of simple journals without the risk of excessive stress and wear. They are special order - please call Montalvo for further details.
Option 12h (handwheel opening position)
- Two different designs available: 12h/li (left) & 12h/re (right)
- Ensures that the proximity switch cable does not hinder operation

Both options (handwheel open/closed and opening position)
- May be installed separately or together

Definition “left / right”
- Determined by the front view of the handwheel

Available sizes (“normal” design / pedestal or flange mount)
- G1000, G1800 and G3000

Electrical Specifications

<table>
<thead>
<tr>
<th>Voltage</th>
<th>12-24 VDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuitry</td>
<td>PNP (3-conductor, + switched)</td>
</tr>
<tr>
<td>Characteristic</td>
<td>NO</td>
</tr>
<tr>
<td>Power</td>
<td>max. 100 mA (not short circuit resistant)</td>
</tr>
<tr>
<td>Cable</td>
<td>2m (6.5ft)</td>
</tr>
</tbody>
</table>

Dimensions mm (in)

<table>
<thead>
<tr>
<th>SIZE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1000</td>
<td>76 (3.00)</td>
<td>60 (2.36)</td>
<td>23 (0.91)</td>
<td>30 (1.18)</td>
<td>20 (0.79)</td>
<td>19 (0.75)</td>
<td>67 (2.64)</td>
</tr>
<tr>
<td>G1800</td>
<td>96 (3.77)</td>
<td>65 (2.55)</td>
<td>20 (0.79)</td>
<td>32.5 (1.28)</td>
<td>20 (0.79)</td>
<td>29 (1.14)</td>
<td>75 (2.95)</td>
</tr>
<tr>
<td>G3000</td>
<td>107 (4.21)</td>
<td>120 (4.72)</td>
<td>20 (0.79)</td>
<td>60 (2.36)</td>
<td>20 (0.79)</td>
<td>40 (1.57)</td>
<td>85 (3.35)</td>
</tr>
</tbody>
</table>
High speed safety chucks should be used for web speeds over 300 m/min.

High speed safety chucks offer the following:

- Handwheel safety lock
- Balanced shaft and handwheel
- Journal design A3 only
- Maximum load = 0.6 x catalog value

Note: adhere to the installation instructions and pay special attention to the journal design (tolerance, materials, hardness, etc.)
Increased Handwheel Opening Angle

Guardian safety chuck handwheels can be fully opened within a range of +/- 10 degrees from the vertical axis.

If the shaft is turned beyond that, the handwheel begins to close and is totally closed at 30 degrees from the vertical axis.

If required, opening angle can be enlarged to customer specifications. Never use an opening angle in excess of +/- 30 degrees as this increases the risk of the winding shaft falling out of the chuck!
Overview

Guardian Normal Safety Chucks are available as pedestal or flange mount.

Pedestal Mount

-OW-
Without shaft end

Flange Mount

-BR-
Shaft end
Prepared for mounting a brake
The following is an explanation of the code used to describe Guardian normal safety chucks. At the beginning of each description is the chuck size. It indicates the maximum roll weight in kilograms.

Order Code

The following is an explanation of the code used to describe Guardian normal safety chucks. At the beginning of each description is the chuck size. It indicates the maximum roll weight in kilograms.

1	Type Of Chuck & Mount	SN	normal / pedestal mount
		FN	normal / flange mount
2	Journal Seat Design	2	V-type square (A2)
		3	triangle (A3)
3	Journal Seat Size	___	measurement of A (journal seat) in millimeters (mm)
4	Handwheel Safety Lock	RS	with Right Side handwheel safety lock
		LS	with Left Side handwheel safety lock
5	Axial Carrier	OX	without axial carrier
		MX	with axial carrier
6	Type Of Chuck End	OW	without shaft end
		BR	with shaft end and bolt circle in housing or sliding sleeve (for brake mounting)
7	Shaft End / Brake	Diameter x Length (DxL) of shaft end (additional specs may be required)	
		___	drawing number of special shaft
		___	Montalvo brake model number
		___	(or other brake specs)
Examples

The following examples are of typical order codes:

G1800-SN-2-40-000-00-LS-OX-OW
- G1800: maximum roll weight up to 1,800 kilograms (kg) (or 18,000 N)
- SN: normal chuck in pedestal mount
- 2: journal design is V-type square (A2)
- 40: journal size of 40 mm (measurement A from data sheet)
- 000: option for sliding chucks only
- 00: option for sliding chucks only
- LS: with Left Side handwheel safety lock
- OX: without axial carrier
- OW: without shaft end

G3000-FN-2-50-000-00-RS-OX-BR-50k6x110
- G3000: maximum roll weight up to 3,000 kilograms (kg) (or 30,000 N)
- FN: normal chuck in flange mount
- 2: journal design is square normal (A2)
- 50: journal size of 50 mm (measurement A from data sheet)
- 000: option for sliding chucks only
- 00: option for sliding chucks only
- RS: with Right Side handwheel safety lock
- OX: without axial carrier
- BR: with shaft end and bolt circle in housing for brake attachment
- 50k6x110: diameter x length of shaft end (including key acc. DIN 6885, sh. 1 and thread on face acc. DIN 332, form D)

G1000-SN-3-30-000-00-LS-OX-BR-V300
- G1000: maximum roll weight up to 1,000 kilograms (kg) (or 10,000 N)
- SN: normal chuck in pedestal mount
- 3: journal design is triangle (A3)
- 30: journal size of 30 mm (measurement A from data sheet)
- 000: option for sliding chucks only
- 00: option for sliding chucks only
- LS: with Left Side handwheel safety lock
- OX: without axial carrier
- BR: with shaft end and bolt circle in housing for brake attachment
- V300: type of brake: Montalvo V Series High Performance Single Disc
Square Journal (A2)

Legend:

- **A min.** minimum square dimension
- **A max.** maximum square dimension
- **W** minimum total length of the journal
- **V** length of the square part of the journal
- **U** front face bevel
- **Z** side bevel
- **H** angle for journal undercut

<table>
<thead>
<tr>
<th>SIZE</th>
<th>A min.</th>
<th>A max.</th>
<th>W</th>
<th>V</th>
<th>U</th>
<th>Z</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1000</td>
<td>20</td>
<td>30</td>
<td>27</td>
<td>14</td>
<td>4</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>G1800</td>
<td>30 (1.25)</td>
<td>40 (1-1/2)</td>
<td>30 (1.181)</td>
<td>15 (0.591)</td>
<td>5 (0.192)</td>
<td>1.5 (0.059)</td>
<td>0.4</td>
</tr>
<tr>
<td>G3000</td>
<td>40 (1-1/2)</td>
<td>50 (2)</td>
<td>32 (1.260)</td>
<td>16 (0.630)</td>
<td>5 (0.192)</td>
<td>2 (0.078)</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Dimensions in mm (in)
Legend:

- **Di**: triangle - inner circle diameter (tolerance f8)
- **Da**: triangle - circumference diameter (tolerance f6) \(Da = Di \times 1.5 \)
- **W**: minimum total length of the journal
- **V**: length of the triangular part of the journal
- **U**: front face bevel
- **K**: control dimension (note tolerances) \(K = \frac{Di}{2} + \frac{Da}{2} \)
- **H**: angle for journal undercut

Triangular Journal (A3)

<table>
<thead>
<tr>
<th>SIZE</th>
<th>Di (f8)</th>
<th>Tolerance for K</th>
<th>W</th>
<th>V</th>
<th>U</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1000</td>
<td>20</td>
<td>-0.027/-0.036</td>
<td>27</td>
<td>14</td>
<td>4</td>
<td>0.3</td>
</tr>
<tr>
<td>G1000</td>
<td>over 20 to 30</td>
<td>-0.031/-0.039</td>
<td>27</td>
<td>14</td>
<td>4</td>
<td>0.3</td>
</tr>
<tr>
<td>G1800</td>
<td>32 to 33</td>
<td>-0.033/-0.044</td>
<td>30</td>
<td>15</td>
<td>5</td>
<td>0.4</td>
</tr>
<tr>
<td>G1800</td>
<td>over 33 to 38</td>
<td>-0.037/-0.047</td>
<td>30</td>
<td>15</td>
<td>5</td>
<td>0.4</td>
</tr>
<tr>
<td>G3000</td>
<td>40 to 47</td>
<td>-0.037/-0.047</td>
<td>32</td>
<td>16</td>
<td>5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Dimensions mm
Winding Shaft Lengths

Calculate winding shaft lengths for PEDESTAL MOUNT (SN) normal chucks using the following formula:

\[WWL = LM - K - AS \]

Legend:

- **WWL**: winding shaft length
- **LA**: distance between chucks
- **LM**: mounting distance
- **K**: specific constant
- **AS**: axial play of the winding shaft

Dimensions mm (in)

<table>
<thead>
<tr>
<th>SIZE</th>
<th>K</th>
<th>AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1000</td>
<td>112 (4.409)</td>
<td>0.5 (0.20)</td>
</tr>
<tr>
<td>G1800</td>
<td>130 (5.118)</td>
<td>0.5 (0.20)</td>
</tr>
<tr>
<td>G3000</td>
<td>194 (7.638)</td>
<td>0.8 (0.30)</td>
</tr>
</tbody>
</table>
Winding Shaft Lengths

Calculate winding shaft lengths for FLANGE MOUNT (FN) normal chucks using the following formula:

$$WWL = LW - K - AS$$

<table>
<thead>
<tr>
<th>SIZE</th>
<th>K</th>
<th>AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1000</td>
<td>138 (5.433)</td>
<td>0.5 (0.020)</td>
</tr>
<tr>
<td>G1800</td>
<td>146 (5.748)</td>
<td>0.5 (0.020)</td>
</tr>
<tr>
<td>G3000</td>
<td>206 (8.110)</td>
<td>0.8 (0.030)</td>
</tr>
</tbody>
</table>

Legend:

- **WWL**: winding shaft length
- **LA**: distance between chucks
- **LW**: mounting distance
- **K**: specific constant
- **AS**: axial play of the winding shaft
The following three application data sheets will help to determine which Guardian normal safety chuck best meets your requirements. The information must be complete and accurate and must accompany each order. The sheets, when properly filled out, will clearly define a specific model of chuck. Remember... the most important method of identification of our chucks is the part number!

The part number will give all relevant information, e.g.:

- Design (shaft end, chuck journal seat, housing, etc.)
- Summary of all component parts used (part number = part number list)
- Options
- Finish, etc.
- Spare parts (sufficient info in part number to order spare parts)

The part number can be found on the packing and purchase order.

Below is a list of the specification data sheets for the Guardian Normal Safety Chuck:

- G1000 p.3-9
- G1800 p.3-10
- G3000 p.3-11
G1000- N- - 000-00- ---- -

Roll weight max.: 10,000 N (2,248 lb)
Torque max.: 200 Nm (1,770 in-lb)

<table>
<thead>
<tr>
<th>Roll weight max.</th>
<th>Torque max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (lb)</td>
<td>Nm (in-lb)</td>
</tr>
</tbody>
</table>

Housing
- SN: pedestal mount
- FN: flange mount

Journal Seat
- 2: V-Type Square (A2)
- 3: Triangle (A3)

Size of Journal
- 20: (mm) standard with
- 25: (mm) standard with
- 30: (mm) standard with

Safety Lock
- LS: safety lock - LEFT side
- RS: safety lock - RIGHT side

Axial Carrier
- OX: without axial carrier
- MX: with axial carrier plate

Shaft End
- OW: without shaft end
- BR: with shaft end

Brake attachment: Type of brake or define special shaft end (see above)

- Hardness: 48/50 HRC = standard
- Seat: cylindrical = standard
- Balanced: not balanced = standard

Roll weight max. N (lb)
Roll diameter max. mm (in)
Roll width max. mm (in)
Roll width min. mm (in)
Winding speed max. m/min (ft/min)
Tension max. N (lb)

Technical Data

Further Options

Shaft end to be defined when option 6 is equal to BR

Additional:

Normal Chucks

Specifications

<table>
<thead>
<tr>
<th>Housing</th>
<th>SN □ pedestal mount</th>
<th>FN □ flange mount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journal Seat</td>
<td>2 □ V-Type Square (A2)</td>
<td>3 □ Triangle (A3)</td>
</tr>
<tr>
<td>Size of Journal Seat</td>
<td>30 □ (mm) standard with</td>
<td>36 □ (mm) - standard with</td>
</tr>
<tr>
<td>Safety Lock</td>
<td>LS □ safety lock - LEFT side</td>
<td>RS □ safety lock - RIGHT side</td>
</tr>
<tr>
<td>Axial Carrier</td>
<td>OX □ without axial carrier</td>
<td>MX □ with axial carrier plate</td>
</tr>
<tr>
<td>Shaft End</td>
<td>OW □ without shaft end</td>
<td>BR □ with shaft end</td>
</tr>
</tbody>
</table>

Technical Data

- **Roll weight max.**: 18,000 N (4,047 lb)
- **Roll diameter max.**: 70 mm (035 k6)
- **Roll width max.**:
 - Ø35 k6
 - 56 X
 - 10 Y
 - 5 T
 - 4 U
 - 4 V

Further Options

- **Brake attachment**: Type of brake ______________________ or define special shaft end (see above)
- **Hardness**: 48/50 HRC = standard □ HRC □ not hardened □ not hardened see page 1-8
- **Seat**: cylindrical = standard □ conical (special order) □ see page 2-2
- **Balanced**: not balanced = standard □ balanced Q=___ n=____rpm □ see page 2-4
- **Indication**: Handwheel Open/Closed □ 12h left □ 12h right □ see page 2-3
- **Roll weight max.**: N (____ lb) □ Winding shaft diameter □ mm (____ in)
- **Roll diameter max.**: mm (____ in) □ Winding shaft length □ mm (____ in)
- **Roll width max.**: mm (____ in) □ Deflection of winding shaft □ mm (____ in)
- **Roll width min.**: mm (____ in) □ Torque max. □ Nm (____in-lb)
- **Winding speed max.**: m/min. (____ ft/min) □ Substrate:
- **Tension max.**: N (____ lb) □ Additional:

1-800-226-8710 / info@montalvo.com / www.montalvo.com
Technical details subject to change without notice. G-CAT-US-05 © Montalvo
G3000- N- -000-00- -00-

Specifications

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Housing</td>
<td>SN</td>
<td>pedestal mount</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FN</td>
<td>flange mount</td>
</tr>
<tr>
<td>2</td>
<td>Journal Seat</td>
<td>2</td>
<td>V-Type Square (A2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Triangle (A3)</td>
</tr>
<tr>
<td>3</td>
<td>Size of Journal Seat</td>
<td>40</td>
<td>(mm) standard with</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45</td>
<td>(mm) standard with</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>(mm) standard with</td>
</tr>
<tr>
<td>4</td>
<td>Safety Lock</td>
<td>LS</td>
<td>safety lock - LEFT side</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RS</td>
<td>safety lock - RIGHT side</td>
</tr>
<tr>
<td>5</td>
<td>Axial Carrier</td>
<td>OX</td>
<td>without axial carrier</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX</td>
<td>with axial carrier plate</td>
</tr>
<tr>
<td>6</td>
<td>Shaft End</td>
<td>OW</td>
<td>without shaft end</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR</td>
<td>with shaft end</td>
</tr>
</tbody>
</table>

Roll weight max.: 30,000 N (6,744 lb)
Torque max.: 1,200 Nm (10,621 in-lb)

Technical Data

- **Roll weight max.:** N (____ lb)
- **Roll diameter max.:** mm (____ in)
- **Roll width max.:** mm (____ in)
- **Roll width min.:** mm (____ in)
- **Winding speed max.:** m/min. (____ ft/min)
- **Tension max.:** N (____ lb)

Further Options

- **Brake attachment:** Type of brake _______ or define special shaft end (see above)

Hardness:
- 48/50 HRC = standard
- _______HRC
- not hardened

Seat:
- cylindrical = standard
- conical (special order)

Balanced:
- not balanced = standard
- balanced Q=____ n=_____rpm

Indication:
- Handwheel Open/Closed
- 12h left
- 12h right

Company: Name: Date:
1-800-226-8710 / info@montalvo.com / www.montalvo.com
Technical details subject to change without notice. G-CAT-US-05 © Montalvo
Overview

Guardian Sliding Safety Chucks are a cost effective solution for axial adjustment of rolls during operation. Manufactured with either a 50mm (+/- 25mm) or 100mm (+/- 50mm) adjustment range, they are available as pedestal (SS) or flange (FS) mount.

- **HR-__--OW-**
 Without shaft end. Axial adjustment by handwheel.

- **FW-__--BR-**

- **AZ-__--OW-**
 Without shaft end. Axial adjustment by freely definable drive pivot.
Guardian Sliding Safety Chucks are a cost effective solution for axial adjustment of rolls during operation. Manufactured with either a 50mm (+/- 25mm) or 100mm (+/- 50mm) adjustment range, they are available as pedestal (SS) or flange (FS) mount.

Order Code

G1800-________-________-________-________-________-________-MX-________-________

<table>
<thead>
<tr>
<th></th>
<th>Type Of Chuck & Mount</th>
<th>SS: sliding / pedestal mount</th>
<th>FS: sliding / flange mount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Journal Seat Design</td>
<td>2: V-type square (A2)</td>
<td>3: triangle (A3)</td>
</tr>
<tr>
<td></td>
<td>Journal Seat Size</td>
<td>___ measurement of A (journal seat) in millimeters (mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Axial Adjustment</td>
<td>050: 50 mm (+/- 25 mm)</td>
<td>100: 100 mm (+/- 50mm)</td>
</tr>
<tr>
<td></td>
<td>Handwheel Safety Lock</td>
<td>RS: with safety lock - RIGHT side</td>
<td>LS: with safety lock - LEFT side</td>
</tr>
<tr>
<td></td>
<td>Axial Carrier</td>
<td>MX: with axial carrier (STANDARD on sliding chucks)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type Of Chuck End</td>
<td>OW: without shaft end</td>
<td>BR: with shaft end and bolt circle in housing or sliding sleeve (for brake mounting)</td>
</tr>
<tr>
<td></td>
<td>Shaft End / Brake</td>
<td>Diameter x Length (DxL) of shaft end (additional specs may be required)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>drawing number of special shaft</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Montalvo brake model number (or other brake specs)</td>
<td></td>
</tr>
</tbody>
</table>
Examples

The following examples are of typical order codes:

G1800-SS-2-40-100-HR-LS-MX-OW
G1800 maximum roll weight up to 1,800 kilograms (kg) (or 18,000 N)
SS sliding chuck in pedestal mount
2 journal design is V-type square (A2)
40 journal size of 40 mm (measurement A from data sheet)
100 axial adjustment of 100 mm
HR handwheel axial adjustment
LS with handwheel safety lock location - LEFT side
MX with axial carrier
OW without shaft end

G1800-SS-2-35-050-FW-RS-MX-BR-50k6x110
G1800 maximum roll weight up to 1,800 kilograms (kg) (or 18,000 N)
SS sliding chuck in pedestal mount
2 journal design is V-type square (A2)
35 journal size of 35 mm (measurement A from data sheet)
050 axial adjustment of 50 mm
FW with sliding shaft
RS with handwheel safety lock location - RIGHT side
MX with axial carrier
BR with shaft end and bolt circle in housing for brake attachment
50k6x110 diameter x length of shaft end (including key acc. DIN 6885, sh. 1 and thread on face acc. DIN 332, form D)

G1800-SS-3-30-100-FW-LS-MX-BR-0118
G1800 maximum roll weight up to 1,800 kilograms (kg) (or 18,000 N)
SS sliding chuck in pedestal mount
3 journal design is triangle (A3)
30 journal size of 30 mm (measurement A from data sheet)
100 axial adjustment of 100 mm
FW with sliding shaft
LS with handwheel safety lock location - LEFT side
MX with axial carrier
BR with shaft end and bolt circle in housing for brake attachment
0118 drawing number of special shaft for customer's brake
Axial Carrier

The axial carrier facilitates the mechanical connection of two sliding chucks. Since only the type OW chuck is adjusted by means of a handwheel, electric or hydraulic drive, it is necessary to slave the opposite chuck through the winding shaft. The axial carrier offers the following advantages over conventional pin-type systems:

- Can be used in all designs of winding shaft journals
- Easier loading and unloading of the winding shaft

When unloading a roll, the lift should be parallel to the carrier to avoid mechanical interference.

Assembly of the axial carrier plate:

The axial carrier is mounted in front of the journal seat as shown below. The shaft journal requires a groove in which the axial carrier fits during loading.
Square Journal (A2)

Legend:
- **A min.** minimum square dimension
- **A max.** maximum square dimension
- **W** journal length
- **X** minimum total length of the journal
- **Y** recess width
- **D** recess diameter $D = A - 1$
- **V** length of the square portion of the journal
- **U** front face bevel
- **Z** side bevel
- **H** angle for journal undercut

<table>
<thead>
<tr>
<th>SIZE</th>
<th>A min.</th>
<th>A max.</th>
<th>W</th>
<th>X</th>
<th>Y</th>
<th>V</th>
<th>U</th>
<th>Z</th>
<th>H°</th>
</tr>
</thead>
<tbody>
<tr>
<td>G500</td>
<td>19 (1)</td>
<td>25 (1)</td>
<td>19 (0.758)</td>
<td>30 (1.181)</td>
<td>11 (0.433)</td>
<td>12.5 (0.492)</td>
<td>3 (0.118)</td>
<td>1 (0.039)</td>
<td>0.3</td>
</tr>
<tr>
<td>G1000</td>
<td>20 (1)</td>
<td>30 (1-1/4)</td>
<td>22 (0.866)</td>
<td>33 (1.299)</td>
<td>11 (0.433)</td>
<td>14 (0.551)</td>
<td>4 (0.157)</td>
<td>1 (0.039)</td>
<td>0.3</td>
</tr>
<tr>
<td>G1800</td>
<td>30 (1-1/4)</td>
<td>40 (1-1/2)</td>
<td>25 (0.984)</td>
<td>38 (1.496)</td>
<td>13 (0.512)</td>
<td>15 (0.591)</td>
<td>5 (0.197)</td>
<td>1.5 (0.059)</td>
<td>0.4</td>
</tr>
<tr>
<td>G3000</td>
<td>40 (1-1/2)</td>
<td>50 (2)</td>
<td>27 (1.063)</td>
<td>42 (1.654)</td>
<td>15 (0.591)</td>
<td>16 (0.630)</td>
<td>5 (0.197)</td>
<td>2 (0.079)</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Dimensions mm (in)
Triangular Journal (A3)

Legend:

- **Di** triangle - inner circle diameter (tolerance f8)
- **Da** triangle - circumference diameter (tolerance f6) \(Da = Di \times 1.5 \)
- **W** journal length
- **X** minimum total length of the journal
- **Y** recess width
- **D** recess diameter \(D = Di \)
- **Rz** front recess radius
- **V** length of the triangular portion of the journal
- **U** front face bevel
- **K** control dimension (note tolerances) \(K = Di/2 + Da/2 \)
- **H** angle for journal undercut

Dimensions mm

<table>
<thead>
<tr>
<th>SIZE</th>
<th>Di (f8)</th>
<th>Tolerance for K</th>
<th>W</th>
<th>X</th>
<th>Y</th>
<th>Rz</th>
<th>V</th>
<th>U</th>
<th>H°</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1800 32 to 33</td>
<td>-0.033/-0.044</td>
<td>24</td>
<td>36</td>
<td>12</td>
<td>6</td>
<td>15</td>
<td>5</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>G1800 over 33 to 38</td>
<td>-0.037/-0.047</td>
<td>24</td>
<td>36</td>
<td>12</td>
<td>6</td>
<td>15</td>
<td>5</td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>
Winding Shaft Lengths

Calculate winding shaft lengths for PEDESTAL MOUNT (SS) sliding chucks using the following formula:

\[
WWL = LM - K
\]

Legend:

- \(WWL \) winding shaft length
- \(LA \) distance between chucks
- \(LM \) mounting distance
- \(K \) specific constant

<table>
<thead>
<tr>
<th>SIZE</th>
<th>(K) (axial adj. 50mm)</th>
<th>(K) (axial adj. 100mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1800</td>
<td>246 (9.685)</td>
<td>296 (11.654)</td>
</tr>
</tbody>
</table>
Winding Shaft Lengths

Calculate winding shaft lengths for FLANGE MOUNT (FS) sliding chucks using the following formula:

\[WWL = LM - K \]

Legend:

- **WWL**: winding shaft length
- **LA**: distance between chucks
- **LM**: mounting distance
- **K**: specific constant

Dimensions mm (in)

<table>
<thead>
<tr>
<th>SIZE</th>
<th>K (axial adj. 50mm)</th>
<th>K (axial adj. 100mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1800</td>
<td>197 (7.756)</td>
<td>247 (9.724)</td>
</tr>
</tbody>
</table>
The application data sheet will help to determine which Guardian sliding safety chuck configuration best meets your requirements. The information must be complete and accurate and must accompany each order. The sheet, when properly filled out, will clearly define a specific chuck. Remember... the most important method of identification of our chucks is the part number!

The part number will give all relevant information, e.g.:

- Design (shaft end, chuck journal seat, housing, etc.)
- Summary of all component parts used (part number = part number list)
- Options
- Spare parts (sufficient info in part number to order spare parts)

The part number can be found on packing slips and purchase orders.
G1800-MX Specifications

Roll weight max.: 18,000 N (4,047 lb)
Torque max.: 380 Nm (3,363 in-lb)

<table>
<thead>
<tr>
<th>1</th>
<th>Housing</th>
<th>SS</th>
<th>pedestal mount</th>
<th>FS</th>
<th>flange mount</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Journal Seat</th>
<th>2</th>
<th>V-Type Square (A2)</th>
<th>3</th>
<th>Triangle (A3)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Size of Journal</th>
<th>30</th>
<th>(mm) standard with</th>
<th>35</th>
<th>(mm) standard with</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Seat</th>
<th>40</th>
<th>(mm) standard with</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Path</th>
<th>050</th>
<th>axial adjustment +/- 25mm</th>
<th>100</th>
<th>axial adjustment +/- 50mm</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>OW - Type</th>
<th>HR</th>
<th>drive by hand wheel</th>
<th>AZ</th>
<th>drive by driving shaft</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>BR - Type</th>
<th>FW</th>
<th>sliding shaft end</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Safety Lock</th>
<th>LS</th>
<th>safety lock - LEFT side</th>
<th>RS</th>
<th>safety lock - RIGHT side</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Axial Carrier</th>
<th>MX</th>
<th>with axial carrier plate (STANDARD)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Shaft End</th>
<th>OW</th>
<th>without shaft end</th>
<th>BR</th>
<th>with shaft end & bolt circle in housing (for brake attachment)</th>
</tr>
</thead>
</table>

Further Options

<table>
<thead>
<tr>
<th></th>
<th>BR std. (mm)</th>
<th>B</th>
<th>82</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BR special</td>
<td>B</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>AZ std. (mm)</td>
<td>D</td>
<td>Ø20 h7</td>
</tr>
<tr>
<td></td>
<td>AZ special</td>
<td>D</td>
<td>Ø20 h7</td>
</tr>
</tbody>
</table>

Brake attachment
- **Type of brake**:
- **Define special shaft end**

Hardness
- **48/50 HRC** = standard
- **HRC**
- **not hardened**

Seat
- **cylindrical** = standard
- **conical** (special order)

Balanced
- **not balanced** = standard
- **balanced**

Indication
- **Handwheel Open/Closed**
- **12h left**
- **12h right**

Roll weight max.
- **N (lb)**

Roll diameter max.
- **mm (in.)**

Roll width max.
- **mm (in.)**

Roll width min.
- **mm (in.)**

Winding speed max.
- **m/min. (ft./min.)**

Tension max.
- **N (lb)**

Company:

Name:

Date:
Troubleshooting

Winding shaft cannot be easily loaded/unloaded or the journals jam when the shaft is being loaded
- Journal tolerance incorrect
- Chuck not properly aligned
- Not enough axial play

Handwheel cannot be opened or closed without using undue force
- Journal tolerance incorrect
- Journal/shaft too long
- Chuck not properly aligned
- Front face bevel missing or too small
- Excessive deflection of roll shaft

Winding shaft cannot be rotated correctly
- Journal tolerance incorrect
- Journal/shaft too long
- Chuck not properly aligned
- Winding shaft journal not in alignment

Handwheel opens slightly during operation, handwheel wobbles, iron filings from the housing can be seen, wear on the housing can be seen
- Ball catch defective or dirty
- Excessive winding shaft deflection
- Load or torque too high
- Incorrect weight or torque reduction with A2 journal seat
- Journal/shaft too long
- Too much axial play

Premature wear on the journal seat or on the winding shaft journal
- Journal not cut back
- Chuck not properly aligned
- Too much load on chuck
- Incorrect weight or torque reduction with A2 journal seat
- Excessive winding shaft deflection
- Wrong material used for journal
- Journal hardness not compatible with chuck journal seat

Noise
- Handwheel/journal tolerance too loose
- Chucks misaligned or damaged

Chuck has stiff movement
- Defective bearing
- Improper installation of brake or drive to chuck shaft
Guardian standard chucks require no extensive maintenance!

The ball bearings are lubricated for life. Because operating conditions vary, chuck life cannot be easily estimated.

The following items should be checked at regular intervals:

- ease of rotation
- ease of closing movement
- make sure that the ball-detent can be moved easily and that it latches correctly in the closed position
- check the condition of the journal seat and the shaft journals
- check the play between the shaft journal and the journal seat of the chuck and for true running of the handwheel
- check the function of the handwheel safety lock
- visual check for unusual wear or damage

If the play between the handwheel and the shaft journal is outside of the limits listed below, replacement of both parts is recommended. This is especially important in the case of high loads and speeds.

Tolerance Range: Min. 0.15mm (0.006 in) Max. 0.2mm (0.008 in)

Based on a combination of load and web speed, replacement of the handwheel and shaft journals is recommended when the gap between the parts exceeds 0.15 to 0.20 mm.

The following items should be cleaned and/or lubricated at regular intervals:

- all surfaces related to the ball-detent catch
- the running surface of the sliding sleeve (on sliding chucks)
Handwheel Replacement

Handwheel and journal seat are supplied as an assembly and therefore they must not be disassembled!

The **two pivot pins** are secured in place by the manufacturer and **cannot be removed without destroying the handwheel assembly!**

When removing the assembly, **make sure that you do not press the journal seat out of the handwheel, as this would allow the ball catch to spring out causing it to eject all parts!**

A replacement handwheel is supplied as a complete unit including journal inserts.

Handwheel Replacement Diagram

- Safety Lock (Left Side location) (not installed)
- Insert Shield
- Journal Inserts (4 piece set)
- Mounting holes (4)
- Pivot Pin (one per side)
- Journal Seat
- Access set screw to ball detent and/or safety lock components.

Legend

- Pivot Pin
- Journal Seat
- Insert Shield
- Journal Inserts
- Safety Lock
- Mounting holes

Technical details subject to change without notice. G-CAT-US-05 © Montalvo
Journal Insert Replacement

1. Remove handwheel (see instructions).
2. Remove lower inserts by sliding out towards back.
3. Remove (4) bolts holding upper inserts.
4. Reinstall new set of inserts making sure to use thread locking compound on (4) upper insert bolts.
5. Check upper insert alignment with shaft.
6. Reinstall handwheel (see instructions).
Handwheel Ball Detent Replacement

The handwheel ball detent provides a positive clicking action that secures the handwheel into a precise, closed position. The assembly is located on the opposite side of the safety lock and can be swapped with the safety lock assembly to relocate the safety lock to a LEFT or Right position if needed.

Follow the steps below to inspect or replace the Ball Detent Assembly. Make sure to observe all Lockout/Tagout procedures.

Removal:

1 - Remove set screw.
2 - Remove spring.
3 - Remove rivet.
4 - Remove ball rearing.

Installation:

1 - Apply lithium grease to ball bearing and install.
2 - Apply lithium grease to rivet and spring and install them together.
3 - Apply thread locking compound to set screw.
4 - Screw set screw into handwheel.
5 - Adjust set screw to achieve *desired click-locking action.

*The adjusted click locking action should require a moderate amount of hand force to open or close the handwheel. To avoid possible operator injury, the set screw should not to protrude from edge of handwheel!

Caution - DO NOT press on journal seat if handwheel is removed from chuck. Pressing journal seat out of handwheel will allow parts to eject with sufficient force to cause injury!

Replacement parts available as an assembly only.

Caution - Do not remove this set screw by mistake. Removing the set screw will allow parts to eject with sufficient force to cause injury!
Handwheel Safety Lock Replacement

The handwheel safety lock prevents unintentional opening of the handwheel. It must be replaced when it becomes inoperable!

Follow the steps below. Replacing the RIGHT SIDE lock is shown. Procedure for LEFT SIDE replacement is identical. Note: The lock position can be moved to LEFT or RIGHT SIDE by swapping with Ball Detent assembly.

Removal:

1. Remove set screw.
2. Remove spring.
3. Unscrew button.
4. Remove locking pin.

Installation:

1. Grease locking pin and insert into hole. Note position of tapped hole.
2. Align tapped hole in pin with hole for button.
3. Apply a drop of thread locking compound to threads of button.
4. Screw button to pin. Do not overtighten - button should slide freely!
5. Insert spring.
6. Apply thread locking compound to set screw.
7. Screw set screw into handwheel so that it is flush to edge of handwheel.
8. Check free movement of button again. Adjust button as needed before thread locking compound sets up.

Caution - Do not remove this set screw by mistake. Removing the set screw will allow parts to eject with sufficient force to cause injury!

G1800 only Locking Pin has two tapped holes. Use outboard hole only otherwise pin and lock will not function properly.
Removing / Installing Handwheels

1. Loosen the socket head cap screws on the journal seat. They are secured with a thread locking compound so it may be necessary to heat the heads of the screws to loosen them. Never heat the complete handwheel.

2. Remove the handwheel (whether defective or worn journal inserts).

3. Clean the socket head cap screws and tapped holes to remove all traces of adhesive. Keep socket head cap screws and tapped holes free of grease.

4. Install a replacement or existing handwheel (with new journal inserts), without canting it, on the pilot stub of the shaft and make sure that the inclined surface on the back of the journal seat is parallel to the incline of the shaft.

5. Coat the socket head cap screws with a thread locking adhesive.

6. Tighten the socket head cap screws uniformly to specified torque making sure that the handwheel is not canted in the process.

Caution - DO NOT press on journal seat if handwheel is removed from chuck. Pressing journal seat out of handwheel will allow parts to eject with sufficient force to cause injury!

SIZE Screw Type Torque Nm (ft-lb)
<table>
<thead>
<tr>
<th>SIZE</th>
<th>Screw Type</th>
<th>Torque Nm (ft-lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1000</td>
<td>SHCS M8 x 30</td>
<td>35 (25.8)</td>
</tr>
<tr>
<td>G1800</td>
<td>SHCS M10 x 40</td>
<td>70 (51.6)</td>
</tr>
<tr>
<td>G3000</td>
<td>SHCS M12 x 45</td>
<td>120 (88.5)</td>
</tr>
</tbody>
</table>
Dismantling Normal Chucks

TYPE OW + BR

1. Remove the handwheel (10).
2. Remove the catch ring (5).
3. The shaft (2) can be removed through the front end by pressing or carefully tapping it. Bearing (3) will remain on the shaft. Bearing (4) will remain in the housing (1).
4. Perform necessary repair work.
5. Assembly is carried out in reverse sequence.
Dismantling Sliding Chucks

TYPE HR-OW

1. Remove the axial carrier (11).
2. Remove the handwheel.
3. Remove the turning safety (2).
4. By turning the handwheel (31), you can now push the sliding sleeve out of the housing.
5. Loosen the three threaded pins (23). They are secured with thread locking adhesive. Never heat the entire sliding sleeve!
6. Pull the thread ring (22) out from the rear.
7. Remove the retaining rings (7 & 8) and the support ring (6).
8. The shaft (9) can be removed through the front by pressing or carefully tapping it.
9. If you have to repair the adjustment mechanism, first remove the retaining ring (29) and the support ring (28).
10. Pull the complete adjustment mechanism out of the housing.
11. The threaded spindle (24), the spacer ring (25) and the handwheel (31) are bonded together and therefore form a single unit. They can be separate from each other only by heating them.
12. Assembly is performed in reverse sequence.
13. Make sure that thread locking adhesive is applied to the threaded pins (23) before assembling.

Keep all sliding parts, such as sliding sleeve and threaded spindle, clean. Carefully lubricate them with thickened grease containing molybdenum disulfide prior to assembly!
Dismantling Sliding Chucks
Dismantling Sliding Chucks

FW-BR

1. Remove the axial carrier (12).
2. Remove the handwheel.
3. Remove the turning safety (2).
4. You can then pull the sliding sleeve out of the housing.
5. Remove the retaining rings (7 & 8) and the support ring (pos. 6).
6. The shaft can now be removed through the front by pressing or carefully tapping it.
7. Assembly is performed in reverse sequence.

Keep the sliding sleeve clean and lubricate it carefully with thickened grease containing molybdenum disulfide before reassembly!
Dismantling Sliding Chucks
Ordering Spare Parts

Parts orders are more readily processed if you reference the part number of the safety chuck. All necessary information is clearly defined by it.

You will find the part number on the following:

- all delivery documents
- in chuck manual
- front face of safety chuck when finger guard is pushed back

On request you will receive a specific chuck manual containing the following:

- chuck designation
- part number
- specification sheet
- installation instructions
- information about winding shaft journals
- information about maintenance
- information about possible defects and their causes
- directions for replacing the handwheel
- directions for dismantling the safety chuck
- sectional view and specification of the component parts
- parts list
- information about ordering spare parts
Achieve More!

Montalvo offers a complete line of tension control products, services and solutions.